8.1	Hamilton's hodograph theorem	102
8.2	Inversion and stereographic projection	107
8.3	Spherical geometry and Moser's theorem	112
8.4	Hyperbolic geometry	118
8.5	The theorem of Osipov and Belbruno	126
8.6	Projective geometry	132
8.7	Newton's vs. Hooke's law	146

101

151

The differential geometry of the Kepler problem

Exercises

Consider the open half space $\mathbb{H} := \{ \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n : x_n > 0 \}.$

Let
$$\gamma: [a,b] \to \mathbb{H}$$
 be a C^1 -curve. $\gamma = (\gamma_1, \ldots, \gamma_n)$

Regular: The velocity vector is nowhere zero

Definition 8.18 The hyperbolic length of γ is

$$\mathcal{L}_{h}(\boldsymbol{\gamma}) := \int_{a}^{b} \frac{|\dot{\boldsymbol{\gamma}}(t)|}{\gamma_{n}(t)} dt.$$

Definition 8.19 A hyperbolic geodesic is a curve $\gamma: I \to \mathbb{H}$, defined on some interval $I \subset \mathbb{R}$, with the following properties.

- (i) The parametrisation is proportional to arc length, i.e. the function $|\dot{\gamma}|/\gamma_n$ is constant.
- (ii) The curve is locally distance minimising, i.e. for sufficiently small subintervals $[t_0, t_1] \subset I$, the curve $\gamma|_{[t_0, t_1]}$ is the shortest connection from $\gamma(t_0)$ to $\gamma(t_1)$.

Example 8.20

Consider two points:
$$(a_1,...,a_{n-1},e^a)$$
 and $(a_1,...,a_{n-1},e^b)$ $(b>a)$
The unique hyperbolic geodesic is $\vec{y}(s) = (a_1,...,a_{n-1},e^s)$, $s \in [a,b]$

$$\frac{|\overline{X}'(s)|}{|\overline{X}'(s)|} = \frac{e^s}{1 + \frac{1}{2} + \frac{1}{$$

(1)
$$\frac{|\overline{\chi}'(s)|}{|\gamma_s(s)|} = \frac{e^s}{e^s} = |$$
, hence $\langle x(y) = b - a \rangle$

(2) Let
$$\vec{\beta}$$
: $[0,1] \rightarrow 1H$ such that $\vec{\beta}(0) = \vec{\gamma}(a)$, $\vec{\beta}(1) = \vec{\gamma}(b)$

Then we have
$$\frac{|\dot{\vec{B}}(t)|}{\beta_n(t)} > \frac{\dot{\vec{B}}n(t)}{\beta_n(t)}$$

we have
$$\frac{1p(t)}{\beta_n(t)} > \frac{p_n(t)}{\beta_n(t)}$$

 $L_{h}(\vec{\beta}) = \int_{0}^{1} \frac{|\vec{\beta}(t)|}{\beta_{h}(t)} dt \gg \int_{0}^{1} \frac{|\vec{\beta}_{h}(t)|}{\beta_{h}(t)} dt = |og \beta_{h}(t)|_{0}^{1} = |og e^{b} - |og e^{a}| = b - a$ Equality if and only if Bi====Bn-1=0 and Bn>0 (regular)

Definition 8.21 The **tangent space** $T_x\mathbb{H}$ of \mathbb{H} at a point $x \in \mathbb{H}$ is the space of velocity vectors of C^1 -curves passing through x:

$$T_{\mathbf{x}}\mathbb{H} := \{\dot{\boldsymbol{\gamma}}(0), \text{ where } \boldsymbol{\gamma} \colon (-\varepsilon, \varepsilon) \to \mathbb{H} \text{ is a } C^1\text{-curve with } \boldsymbol{\gamma}(0) = \mathbf{x}\}.$$

$$\langle \mathbf{v}, \mathbf{w} \rangle_{\mathbf{h}} := \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\chi_n^2} \quad |\mathbf{v}|_{\mathbf{h}} := \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle_{\mathbf{h}}} = \frac{|\mathbf{v}|}{\chi_n} \longrightarrow \mathcal{L}_{\mathbf{h}}(\boldsymbol{\gamma}) = \int_a^b |\dot{\boldsymbol{\gamma}}(t)|_{\mathbf{h}} dt$$

Riemannian metric the half-space model of hyperbolic space

Definition 8.23 Given a C^1 -map $\Phi \colon \mathbb{H} \to \mathbb{H}$, its **differential** at the point $\mathbf{x} \in \mathbb{H}$ is the linear map

$$T_{\mathbf{x}}\mathbb{H} \longrightarrow T_{\Phi(\mathbf{x})}\mathbb{H}$$
 $\mathbf{v} \longmapsto J_{\Phi,\mathbf{x}}(\mathbf{v})$

$$\frac{d}{dt}(\Phi \circ \vec{\chi})(0) = J_{\Phi,\vec{\chi}}(\vec{\chi}(0))$$

$$\exists \vec{\chi} = \vec{\chi}(0),$$

L> relocity vector of \$\vec{z}\$ at \$\vec{z}\$ maps to relocity vector of \$\vec{\phi} \cdot \vec{\phi}\$ at \$\vec{\phi}\$ (\$\vec{z}\$)

Definition 8.24 An **isometry** of \mathbb{H} is a diffeomorphism $\Phi \colon \mathbb{H} \to \mathbb{H}$ whose differential preserves the Riemannian metric, that is,

$$\frac{\langle J_{\Phi,\mathbf{x}}(\mathbf{v}),J_{\Phi,\mathbf{x}}(\mathbf{w})\rangle_{\mathbf{h}}}{\langle \mathbf{v},\mathbf{w}\rangle_{\mathbf{h}}} = \frac{\langle \mathbf{v},\mathbf{w}\rangle_{\mathbf{h}}}{\mathbf{x}}$$
 for all $\mathbf{x}\in\mathbb{H}$ and all $\mathbf{v},\mathbf{w}\in T_{\mathbf{x}}$.

Definition 8.25 The **angle** $\angle(\mathbf{v}, \mathbf{w}) \in [0, \pi]$ between two tangent vectors $\mathbf{v}, \mathbf{w} \in T_{\mathbf{x}} \mathbb{H}$ is determined by

$$\cos \angle(\mathbf{v}, \mathbf{w}) := \frac{\langle \mathbf{v}, \mathbf{w} \rangle_{h}}{|\mathbf{v}|_{h} \cdot |\mathbf{w}|_{h}}.$$

$$= \frac{\langle \vec{v}, \vec{w} \rangle}{\frac{|\vec{v}|}{|\mathbf{x}_{h}} \cdot \frac{|\vec{w}|}{|\mathbf{x}_{h}|}}$$

$$= \frac{\langle \vec{v}, \vec{w} \rangle}{|\vec{v}| \cdot |\vec{w}|} \longrightarrow \text{conformally equivalent}$$

$$\partial \mathbb{H} := \{ \mathbf{x} \in \mathbb{R}^n \colon x_n = 0 \} \cup \{ \infty \}$$

Boundary at infinity

Lemma 8.27 Let
$$\mathbf{p} \neq \infty$$
 be a point in $\partial \mathbb{H}$. The inversion Φ of $\mathbb{R}^n \cup \{\infty\}$ in a sphere centred at \mathbf{p} restricts to an isometry of \mathbb{H} .
$$\Phi(\vec{\chi}) = \vec{p} + r_o^2 \cdot \frac{\vec{\chi} - \vec{p}}{\vec{\chi}}$$

(1)
$$\Phi: \mathbb{H} \to \mathbb{H}$$

WLOG,
$$\vec{p} = \vec{0}$$

Let $\vec{x}(t)$ be a C' curve in IH, $\vec{y} = r^2 \frac{\vec{x}}{|\vec{x}|^2}$ be its image curve

 $\frac{|\vec{y}|}{|\vec{y}|} = r^2 \frac{|\vec{x}|}{|\vec{x}|^2} \cdot \frac{|\vec{x}|}{r^2} = \frac{|\vec{x}|}{|\vec{x}|} \cdot \text{Since } \vec{y} = k\vec{x}, |\vec{y}| = \frac{x_n}{y_n}$

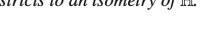
Let
$$\vec{x}(t)$$
 be a Goal: $|\vec{y}|_b = |\vec{y}|_b$

Goal:
$$|\vec{y}|_h = |\vec{x}|_h$$

$$\dot{\vec{y}} = r^2 \frac{\vec{x}}{|\vec{x}|^2} - r^2 \vec{x} \frac{2(\vec{x}, \vec{x})}{|\vec{x}|^4}$$

$$\vec{r} = \vec{r}^2 \frac{\vec{x}}{|\vec{x}|^2} -$$

 $|\vec{y}|_{\lambda} = \frac{|\vec{y}|}{|\vec{y}|_{\lambda}} = \frac{|\vec{x}|}{|\vec{x}|_{\lambda}} = |\vec{x}|_{h}$



$$\oint (\vec{x}) = \vec{p} + r_0^2 \cdot \frac{\vec{x} - \vec{p}}{|\vec{x} - \vec{p}|^2}$$

Definition 8.28 A hyperbolic line is a maximal geodesic (understood to be of unit speed) in \mathbb{H} , i.e. a geodesic $\gamma \colon \mathbb{R} \to \mathbb{H}$ defined on all of \mathbb{R} .

Proposition 8.29 The hyperbolic lines are precisely the euclidean half-lines orthogonal to $\partial \mathbb{H}$ and the euclidean semicircles orthogonal to $\partial \mathbb{H}$.

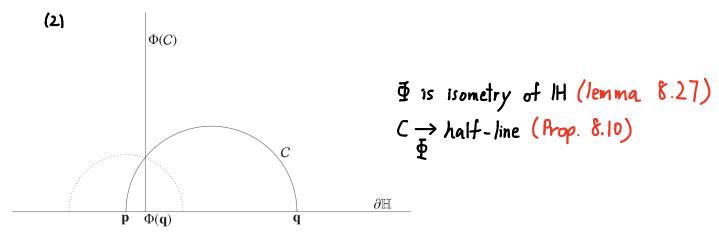


Figure 8.10 Hyperbolic lines.

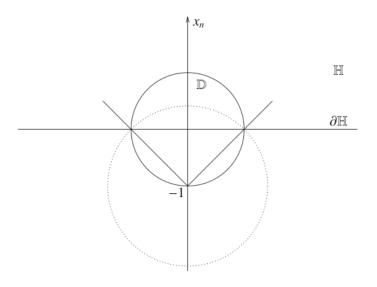


Figure 8.12 The inversion sending \mathbb{H} to \mathbb{D} .

inversion of the sphere of radius $\sqrt{2}$ about the point (0, ..., 0, -1)

Proposition 8.30 The Riemannian metric on
$$\mathbb{D}$$
 induced from the hyperbolic metric on \mathbb{H} via the diffeomorphism $\Phi \colon \mathbb{H} \to \mathbb{D}$ is given by

$$\langle \mathbf{v}, \mathbf{w} \rangle_{h'} = \frac{1}{(1 - |\mathbf{y}|^2)^2} \quad \text{for } \mathbf{v}, \mathbf{w} \in T_{\mathbf{y}} \mathbb{D}.$$

ite
$$\vec{u} = (0, ..., 0, 1)$$
. Then $\vec{x} + \vec{u} = \frac{2(\vec{y} + \vec{u})}{|\vec{y}| + \vec{u}|^2}$
 $\vec{u} = |\vec{y}|_{k} = |\vec{x}|_{k}$

$$|\vec{x}|_{\lambda} = \frac{|\vec{x}|}{|\vec{y} + \vec{\alpha}|^{2}} = \frac{|\vec{x}|}{\langle \vec{x}, \vec{\alpha} \rangle}$$

$$\vec{x} = \frac{2\vec{y}|\vec{y} + \vec{\alpha}|^{2} - 2(\vec{y} + \vec{\alpha}) \cdot 2\langle \vec{y}, \vec{y} + \vec{\alpha} \rangle}{|\vec{y} + \vec{\alpha}|^{4}} \longrightarrow |\vec{x}| = \frac{2|\vec{y}|}{|\vec{y} + \vec{\alpha}|^{4}}$$

 $\langle \hat{x}, \hat{u} \rangle = \frac{2(\langle \vec{y}, \vec{u} \rangle + 1)}{|\vec{y} + \vec{u}|^2} - | = \frac{|\vec{y} + \vec{u}|^2 - |\vec{y}|^2 - |\vec{u}|^2 + 1}{|\vec{y} + \vec{u}|^2} - | = \frac{|-|\vec{y}|^2}{|\vec{y} + \vec{u}|^2}$

 $|\vec{y}|_{h'} = |\vec{x}|_{h} = \frac{2|\vec{y}|}{|\vec{y} + \vec{x}|^{2}} \cdot \frac{|\vec{y} + \vec{x}|^{2}}{|-|\vec{y}|^{2}} = \frac{2|\vec{y}|}{|-|\vec{y}|^{2}}$

eurve in
$$H$$
, $\vec{y}(t) = \vec{\Phi}(\vec{x}(t))$ in ID

1. Then $\vec{x} + \vec{u} = \frac{2(\vec{y} + \vec{u})}{|\vec{y} + \vec{u}|^2}$

$\langle \mathbf{v}, \mathbf{w} \rangle_{\mathrm{h'}} = \frac{4 \langle \mathbf{v}, \mathbf{w} \rangle}{\left(1 - \mathbf{y} ^2\right)^2}$	for $\mathbf{v}, \mathbf{w} \in T_{\mathbf{y}} \mathbb{D}$.

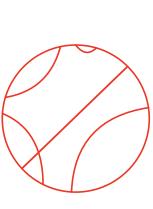
Definition 8.31 The pair $(\mathbb{D}, \langle .,. \rangle_{h'})$ is called **the Poincaré disc model of hyperbolic space**.

Proposition 8.32 The hyperbolic lines in the Poincaré disc model are precisely the arcs of circles orthogonal to $\partial \mathbb{D}$ and the diameters of \mathbb{D} .

 Φ (Prop. 8.10) euclidean lines or circles orthogonal to $\partial H \longrightarrow lines$ and circles orthogonal to ∂D

(Prop. 8.29)
$$\uparrow$$

hyperbolic lines in $H \longrightarrow hyperbolic$ lines in D



Theorem 8.33 (Osipov, Belbruno) The inversion in the unit sphere $S^2 \subset \mathbb{R}^3 \cup \{\infty\}$ yields a bijection between, on the one hand, the hodographs of Kepler solutions with energy h = 1/2 or h = 0 and, on the other hand, the oriented hyperbolic lines in \mathbb{D}^3 or euclidean lines in \mathbb{R}^3 , respectively. $h = \frac{1}{2} v^2 - \frac{M}{V}$ (3.6)

radial plane \rightarrow 10° or 1R°

(Hyperbolic: $\lambda=\pm$) For $c\neq 0$, hodograph is the part of velocity circle that outside the energy circle $\{v^2=1\}$. Inversion maps this to ourc of circle orthogonal to ∂D^2 . For c=0, hodograph is the part of radial ray outside energy circle. Inversion maps this to diameter of D^2 .

Ly hyperbolic lines in 102 (Rop. 8.32)

(Parabolic: h=0) For $c\neq 0$, hodographs are circles through the origin with origin removed $\{v^2=0\}$ For c=0, hodographs are radial lines without origin, but include ∞ Inversion maps these to exclide an lines in IR^2 Parabolic Parab

line parametrised by arc length with respect to the scaled euclidean metric
$$4\langle .,.\rangle$$
.

$$xy-plane, \vec{c}=(0,0,c), \vec{e}=(1,0,0)$$

$$for c\neq 0, \vec{v}(\theta) = \frac{M}{c}(-\sin\theta, 1+\cos\theta), \theta \in (-\pi,\pi) \quad (8.1)$$
For $c \neq 0$,

Let
$$\vec{w}$$
 be the curve by inverting \vec{v} in the unit circle $\vec{w}(\theta) = \frac{\vec{v}(\theta)}{\vec{v}^2(\theta)} = \frac{c}{2n} \left(\frac{-\sin\theta}{1+\cos\theta} \right)$

$$r = (r\cos\theta, r\sin\theta) = \left(\frac{1}{2}\left(\frac{c^{2}}{\mu} - u^{2}\right), \frac{c}{\mu}u\right) \quad (Section 4.3)$$

$$\frac{c}{2\mu} \cdot \frac{-\sin\theta}{1+\cos\theta} = \frac{-\sin\theta}{2c} \cdot \frac{\frac{c^{2}}{\mu}}{1+\cos\theta} = \frac{-r\sin\theta}{2c} = -\frac{1}{2} \cdot \frac{u}{4\mu} = -\frac{s}{2}$$

1> w(s) = (-1/2, 2/4) | dw |2 = 1 => <...>

For
$$\langle \rightarrow 0 \rangle$$

$$\vec{r} = (-\frac{u^2}{2}, 0)$$

$$\vec{v} = (\dot{x}, 0) = (-u\dot{x}, 0) = (-\frac{2}{3}, 0)$$

$$\vec{v} = (\dot{x}, 0) = (-u\dot{x}, 0) = (-\frac{2}{3}, 0)$$

$$\vec{v} = (\dot{x}, 0) = (-\frac{5}{3}, 0)$$

$$\vec{v} = (\frac{1}{3}, 0) = (-\frac{5}{3}, 0)$$

Horizontal lines in upper half oriented in negative x-direction

Proposition 8.36 Let $u \mapsto \mathbf{v}(u)$ be the velocity curve of a Kepler solution

Hyperbook with h = 1/2. The inversion in the unit sphere sends this curve to a hyperbolic line parametrised by arc length.

For
$$2 \neq 0$$
,
$$\vec{v}(\theta) = \frac{1}{\sqrt{e^2 - 1}} \left(-\sin \theta, e + \cos \theta \right), \quad |+e\cos \theta > 0. \quad (8.1) \quad c = \mu \sqrt{e^2 - 1} \quad (3.7)$$

$$\vec{v}_1 = \frac{1 + e^2 + 2e\cos \theta}{e^2 - 1}$$

$$\overrightarrow{w} = \frac{\overrightarrow{\nabla}}{\nabla^2} = \frac{\sqrt{e^2 - 1}}{1 + e^2 + 2e\cos\theta} \left(-\sin\theta, e + \cos\theta \right)$$

$$\left|\frac{d\vec{v}}{du}\right|_{L^{2}} = \frac{1}{\left|\frac{d\vec{v}}{du}\right|} \rightarrow \left|\frac{d\vec{v}}{d\theta}\right| \cdot \left|\frac{d\theta}{dt}\right| \cdot \left|\frac{dt}{du}\right|$$

$$\int_{-\infty}^{\infty} \frac{dw}{du} \rightarrow \frac{|dw|}{d\theta} \cdot \frac{|d\theta|}{dt} \cdot \frac{dt}{du}$$

For
$$c=0$$
, $e=1$,
 $x(u)=a(1-\cosh u)$, $t(u)=a(\sinh u-u)$ (see Ex. 4.3)

$$\dot{x}=\frac{dx}{du}\cdot\frac{du}{dt}=\frac{dx}{du}\cdot\frac{\left(\frac{dt}{du}\right)^{-1}}{\left(\frac{dt}{du}\right)^{-1}}=\frac{-\sinh u}{\cosh u-1}$$

$$|\frac{d\vec{v}}{du}| = \left|\frac{1-\cos hu}{\sin hu}, 0\right|$$

$$|\frac{d\vec{v}}{du}| = \left|\frac{1-\cos hu}{\sin h^2 u}\right| = \frac{\cosh u - 1}{\sinh^2 u}$$

$$\left|\frac{d\vec{v}}{du}\right| = \left|\frac{1-\omega shu}{\sinh^2 u}\right| = \frac{\cosh u - 1}{\sinh^2 u}$$

$$\left|\frac{du}{du}\right| = \left|\frac{1-\omega s n u}{s n h^2 u}\right| = \frac{\cos n u - 1}{s i n h^2 u}$$

$$1-w^2 = \frac{2(\omega s h u - 1)}{\sin h^2 u}$$

 $\left|\frac{d\vec{w}}{du}\right|_{1} = \frac{2\left|\frac{dw}{du}\right|}{\left|\frac{dw}{du}\right|} = 1$

stereographic projection $\Psi_K \colon S^3_{1/\sqrt{K}} \setminus \{N\} \to \mathbb{R}^3$, where $N = (0, 0, 0, 1/\sqrt{K})$, is given by $\Psi_K(x_1, x_2, x_3, x_4) = \frac{1}{1 - \sqrt{K} x_4} (x_1, x_2, x_3);$ the inverse map is given by

For $K \in \mathbb{R}^+$ consider the sphere $S^3_{1/\sqrt{K}} \subset \mathbb{R}^4$ of radius $1/\sqrt{K}$ centred at **0**. The

$$\Psi_K^{-1}(w_1, w_2, w_3) = \frac{1}{Kw^2 + 1} \left(2w_1, 2w_2, 2w_3, \frac{Kw^2 - 1}{\sqrt{K}} \right),$$
 where we write $\mathbf{w} = (w_1, w_2, w_3)$ and $w = |\mathbf{w}|$.

Proposition 8.38 The Riemannian metric $\langle .,. \rangle_K$ on \mathbb{R}^3 that turns Ψ_K into an isometry is given by

given by
$$\left\langle \cdot, \cdot \rangle_{K} = \frac{4\langle \cdot, \cdot \rangle}{\left(1 + Kw^{2}\right)^{2}}.$$
 (8.12)

$$|\vec{w}|_{K}^{2} = |\vec{x}|^{2} = \frac{4|\vec{w}|^{2}}{(1+Kw^{2})^{2}} \quad \vec{x} = \Psi_{K}^{-1}(\vec{w})$$

For $K \in \mathbb{R}^-$ we can define a Riemannian metric on the disc $\mathbb{D}_{1/\sqrt{|K|}}$ of radius $1/\sqrt{|K|}$ by the same formula (8.12). For K=0 this formula defines the scaled euclidean metric $4\langle .,. \rangle$ on \mathbb{R}^3 .

Definition 8.39 The manifolds

$$M_K := \begin{cases} \mathbb{D}_{1/\sqrt{|K|}} & \text{for } K < 0 \\ \mathbb{R}^3 & \text{for } K = 0 \end{cases}$$
$$S_{1/\sqrt{K}}^3 & \text{for } K > 0$$

with the Riemannian metric $\langle .,. \rangle_K$ are called the three-dimensional **space** forms.

Definition 8.40 Let \mathbf{r} be a solution of the Kepler problem with t = 0 the time of pericentre passage or of (regularised) collision with the force centre, respectively. The function

$$s(t) := \int_0^t \frac{d\tau}{r(\tau)} \qquad \text{(Exercise 4.6)}$$

is called the **Levi-Civita parameter**.

Theorem 8.42 (Moser, Osipov, Belbruno) The inversion of \mathbb{R}^3 in the unit sphere S^2 gives a one-to-one correspondence between the velocity curves of Kepler solutions with energy h, parametrised by the Levi-Civita parameter, and the unit speed geodesics in the space form M_{-2h} .

- 1. One-to-one correspondance
 - a) h>0, K<0 -> Mx= D//IK

inversion in St maps $(v^2=2h)$ to $\{w^2=\frac{1}{2h}\}=\partial ID_{\sqrt{11}}$ b) h < 0 , K > 0 → MK = 5 1/1E

The maps great circles on Six to circles

Invariant under the negative inversion wind in sphere of radius / Ik $(\overrightarrow{w}_1, \overrightarrow{w}_2) = -\frac{1}{K}, \overrightarrow{w}_1, \overrightarrow{w}_2$ are intersection points of circle and radial line inversion in 5 -> circles that <vi, v2> = -K = 2h (lemma 8.6)

2. Metric parametrisation

(K) can be rewritten as
$$\dot{\nabla} = -$$

(K) can be rewritten as
$$\dot{\vec{v}} = -$$

Propose $\left|\frac{d\vec{v}}{dt}\right|_{\frac{1}{2}} = \frac{4\left|\frac{d\vec{v}}{dt}\right|}{(v^2 - 1)^2}$

| dt | = |

(K) can be rewritten as
$$\vec{\nabla} = -\frac{\mu}{r^2} \cdot \vec{r}$$

$$|\vec{\nabla}| = \frac{\mu}{r^2}$$

(K) can be rewritten as
$$\vec{v} = -\frac{M}{C^2}$$

 $\left| \frac{d\vec{v}}{ds} \right| = |\vec{v}| \cdot \frac{dt}{ds} = \frac{H}{r^2} \cdot r = \frac{1}{2}v^2 - h (3.6)$

Lyby inversion, $\frac{4(\cdot,\cdot)}{(v^2-2h)^2} = \frac{4(\cdot,\cdot)}{(1-2h)^2} = (\cdot,\cdot)_{-2h}$

Polarise we get the metric $\frac{4(\cdot,\cdot)}{(v^2-1)^2}$

